Contacts
Your contacts

Vector Informatik GmbH

Visitor Address: Holderäckerstr. 36

70499 Stuttgart

Germany

Phone: +49 711 80670-0

Fax: +49 711 80670-111

E-Mail:

Address for Deliveries:
Motorstr. 56
70499 Stuttgart
Germany

Vector Informatik GmbH

Borsteler Bogen 27

Hamburg

Germany

Phone: +49 40 2020130-0

Fax: +49 40 2020130-20

E-Mail:

Vector Informatik GmbH

Frankfurter Str. 286

38122 Braunschweig

Germany

Phone: +49 531 121990

Fax: +49 531 12199 20

E-Mail:

Vector Consulting Services GmbH

Ingersheimer Str. 20

70499 Stuttgart

Germany

Phone: +49 711 80670 1520

Fax: +49 711 80670 444

E-Mail:

Postal address:
Ingersheimer Str. 24

Vector Informatik GmbH

Philipp-Reis-Str. 1

76137 Karlsruhe

Germany

Phone: +49 721 91430 100

Fax: +49 721 91430 101

E-Mail:

Vector Informatik GmbH

Otto-Hahn-Str. 20

85609 Aschheim

Germany

Phone: +49 89 94384220

Fax: +49 711 80670-111

E-Mail:

Vector Informatik GmbH

Franz-Mayer-Str. 8

93053 Regensburg

Germany

Phone: +49 941 208650

Fax: +49 941 20865 111

E-Mail:

Vector Informatik GmbH

Visitor Address: Holderäckerstr. 36

70499 Stuttgart

Germany

Phone: +49 711 80670 500

Fax: +49 711 80670 555

E-Mail:

Technical Sales Embedded Software and AUTOSAR

Visitor Address: Holderäckerstr. 36

70499 Stuttgart

Germany

Phone: +49 711 80670 400

Fax: +49 711 80670 425

E-Mail:

Vector Informatik GmbH

Visitor Address: Holderäckerstr. 36

70499 Stuttgart

Germany

Phone: +49 711 80670 200

Fax: +49 711 80670-111

E-Mail:

Business hours: Monday to Friday from 8:30 am to 5:00 pm (CET/CEST).

Online: https://portal.vector.com

Vector Informatik GmbH

Visitor Address: Holderäckerstr. 36

70499 Stuttgart

Germany

Phone: +49 711 80670 5050

Fax: +49 711 80670-111

E-Mail:

Vector Informatik GmbH

Ingersheimer Str. 24

70499 Stuttgart

Germany

Phone: +49 711 80670 5770

Fax: +49 711 80670 333

E-Mail:

Vector Informatik GmbH

Visitor Address: Holderäckerstr. 36

70499 Stuttgart

Germany

Phone: +49 711 80670-5050

Fax: +49 711 80670-111

E-Mail:

Vector Informatik GmbH

Visitor Address: Holderäckerstr. 36

70499 Stuttgart

Germany

Phone: +49 711 80670-0

Fax: +49 711 80670-111

E-Mail:

Vector Informatik GmbH

Visitor Address: Holderäckerstr. 36

70499 Stuttgart

Germany

Phone: +49 711 80670 4618

Fax: +49 711 80670 499

E-Mail:

Your contact:
Katja Hahmann
Manager Customer Projects for CANoe and automated Test Systems

Vector Informatik GmbH

Baierbrunner Str. 23

81379 Munich

Germany

Phone: +49 89 74 7377-0

Fax: +49 89 74 7377-99

E-Mail:

Vector Austria GmbH

Millennium Tower, Etage 41
Handelskai 94-96

1200 Vienna

Austria

Phone: +43 1 90160 0

Fax: +43 1 90160 35

E-Mail:

Vector Austria GmbH

Millennium Tower, Etage 41
Handelskai 94-96

1200 Vienna

Austria

Phone: +43 1 90160 55

Fax: +43 1 90160 9955

E-Mail:

Vector Austria GmbH

Millennium Tower, Etage 41
Handelskai 94-96

1200 Vienna

Austria

Phone: +43 1 90160 40

Fax: +43 1 90160 9940

E-Mail:

Vector Austria GmbH

Millennium Tower, Etage 41
Handelskai 94-96

1200 Vienna

Austria

Phone: +43 1 90160 0

Fax: +43 1 90160 35

E-Mail:

Vector North America

39500 Orchard Hill Place
Suite 500

Novi, Michigan 48375

USA

Phone: +1 248 449-9290

Fax: +1 248 449-9704

E-Mail:

Operational sales automotive

Vector North America

39500 Orchard Hill Place
Suite 500

Novi, Michigan 48375

USA

Phone: +1 248-449-9290, Option 3

Fax: +1 248 449-9704

E-Mail:

Vector North America

39500 Orchard Hill Place
Suite 500

Novi, Michigan 48375

USA

Phone: +1 248 449 9290 Option 1

Fax: +1 248 449-9704

E-Mail:

Vector North America

39500 Orchard Hill Place
Suite 500

Novi, Michigan 48375

USA

Phone: +1 248 449 9290 Option 2

Fax: +1 248 449-9704

E-Mail:

Vector GB Ltd.

2480 Regents Court
The Crescent
Birmingham Business Park

West Midlands B37 7YE

United Kingdom

Phone: +44 121 788 7900

E-Mail:

VAT No.: GB 941 2528 36
Registered in England Number 06699692

Vector GB Ltd.

2480 Regents Court
The Crescent
Birmingham Business Park

West Midlands B37 7YE

United Kingdom

Phone: +44 121 788 7900

E-Mail:

Vector GB Ltd.

2480 Regents Court
The Crescent
Birmingham Business Park

West Midlands B37 7YE

United Kingdom

Phone: +44 121 788 7901

Fax: --

E-Mail:

Vector GB Ltd.

2480 Regents Court
The Crescent
Birmingham Business Park

West Midlands B37 7YE

United Kingdom

Phone: +44 121 788 7900

Fax: --

E-Mail:

Vector Japan Co. Ltd.

Seafort Square Center Bldg.
2-3-12 Higashi-shinagawa, Shinagawa-ku

Tokyo 140-0002

Japan

Phone: +81 3 4586 1800

Fax: +81 3 4586 1830

E-Mail:

Vector Japan Co. Ltd.

Global Gate,
4-60-12 Hiraike-cho, Nakamura-ku, Nagoya-shi

Aichi, 453-6110

Japan

Phone: +81 52 770 7170

Fax: +81 52 770 7190

E-Mail:

Vector Japan Co. Ltd.

Cent Urban Bldg. 4F
3-23-15 Nishinakajima, Yodogawa-ku, Osaka-shi

Osaka 532-0011

Japan

Phone: +81 6 6829 6446

Fax: --

E-Mail:

Vector Japan Co. Ltd.

東京都品川区東品川2-3-12 シーフォートスクエア センタービル

〒140-0002

Japan

Phone: +81 3 4586 1800

Fax: +81 3 4586 1830

E-Mail:

Vector Japan Co. Ltd.

愛知県名古屋市中村区平池町4-60-12 グローバルゲート

〒453-6110

Japan

Phone: +81 52 770 7170

Fax: +81 52 770 7190

E-Mail:

Vector Japan Co. Ltd.

Seafort Square Center Bldg.
2-3-12 Higashi-shinagawa, Shinagawa-ku

Tokyo 140-0002

Japan

Phone: +81 3 4586 1800

Fax: +81 3 4586 1830

E-Mail:

Vector Japan Co. Ltd.

Tokyo Seafort Square Center Building
2-3-12 Higashi-Shinagawa, Shinagawa-ku

Tokyo 140-0002

Japan

Phone: +81 3 4586 1810

Fax: +81 3 4586 1830

E-Mail:

Online: https://portal.vector.com

Please refer to the following for reception hours:
- Phone 10-12 / 13-17 (Mo-Fr, excl. holidays)
- E-mail, fax / 24 hours at any time

    Vector Japan Co. Ltd.

    Seafort Square Center Bldg.
    2-3-12 Higashi-shinagawa, Shinagawa-ku

    Tokyo 140-0002

    Japan

    Phone: +81 3 4586 1800

    Fax: +81 3 4586 1830

    E-Mail:

    Vector Japan Co.Ltd...

    Seafort Square Center Bldg.
    2-3-12 Higashi-shinagawa, Shinagawa-ku

    Tokyo 140-0002

    Japan

    Phone: +81 3 4586 1800

    Fax: +81 3 4586 1830

    E-Mail:

    Vector Automotive Technology (Shanghai) Co., Ltd.

    Sunyoung Center
    Room 1601-1603, No.398 Jiang Su Road
    Changning District

    Shanghai 200050

    China

    Phone: +86 21 2283 4688

    Fax: +86 21 6432 5308

    E-Mail:

    Vector Automotive Technology (Shanghai) Co., Ltd.

    2301, 23rd Floor, Indigo Plaza,
    No.20 Jiuxianqiao Road,
    Chaoyang District

    Beijing 100016

    China

    Phone: +86 10 8432 8600

    Fax: +86 21 6432 5308

    E-Mail:

    Vector Automotive Technology (Shanghai) Co., Ltd.

    Sunyoung Center
    Room 1601-1603, No.398 Jiang Su Road
    Changning District

    Shanghai 200050

    China

    Phone: +86 21 2283 4688

    Fax: +86 21 6432 5308

    E-Mail:

    Vector Automotive Technology (Shanghai) Co., Ltd.

    Sunyoung Center
    Room 1601-1603, No.398 Jiang Su Road
    Changning District

    Shanghai 200050

    China

    Phone: +86 21 2283 4688

    Fax: +86 21 6432 5308

    E-Mail:

    Vector Automotive Technology (Shanghai) Co., Ltd.

    Sunyoung Center
    Room 1601-1603, No.398 Jiang Su Road
    Changning District

    Shanghai 200050

    China

    Phone: +86 21 2283 4688

    Fax: +86 21 6432 5308

    E-Mail:

    Vector Automotive Technology (Shanghai) Co., Ltd.

    Sunyoung Center
    Room 1601-1603, No.398 Jiang Su Road
    Changning District

    Shanghai 200050

    China

    Phone: +86 21 2283 4688

    Fax: +86 21 6432 5308

    E-Mail:

    Vector Automotive Technology (Shanghai) Co., Ltd.

    Room 1008, Galaxy Development Building, No. 18, Zhongxin 5th Road
    Futian District

    Shenzhen 518048

    China

    Phone: +86 21 2283 4688

    Fax: +86 21 6432 5308

    E-Mail:

    Vector Korea IT Inc.

    9F, Yongsan Prugio Summit Office-dong,
    69, Hangang-daero, Yongsan-gu

    Seoul 04378

    Korea

    Phone: +82 2 807 0600

    Fax: +82 2 807 0601

    E-Mail:

    Vector Korea IT Inc.

    9F, Yongsan Prugio Summit Office-dong,
    69, Hangang-daero, Yongsan-gu

    Seoul 04378

    Korea

    Phone: +82 2 807 0600 Ext.1

    Fax: +82 2 807 0601

    E-Mail:

    Vector Korea IT Inc.

    용산구 한강대로 69 용산 푸르지오 써밋 업무동 9층

    서울 04378

    Korea

    Phone: +82 2 807 0600 Ext.4

    Fax: +82 2 807 0601

    E-Mail:

    Vector Korea IT Inc.

    9F, Yongsan Prugio Summit Office-dong,
    69, Hangang-daero, Yongsan-gu

    Seoul 04378

    Korea

    Phone: +82 2 807 0600 Ext.2

    Fax: +82 2 807 0601

    E-Mail:

    Vector Korea IT Inc.

    602, Yongsan Prugio Summit Office-dong

    Seoul 04378

    Korea

    Phone: +82 2 807 0600 Ext.3

    Fax: +82 2 807 0601

    E-Mail:

    Vector Italia s.r.l.

    Corso Sempione 68

    20154 Milano

    Italy

    Phone: +39 02678171 10

    Fax: +39 02678171 35

    E-Mail:

    Vector Italia s.r.l.

    Corso Sempione 68

    20154 Milano

    Italy

    Phone: +39 02678171 70

    Fax: +39 02678171 35

    E-Mail:

    Business hours: Monday to Friday from 9:00 am to 6:00 pm (CET/CEST).

    Online: https://portal.vector.com

    Vector Italia s.r.l.

    Corso Sempione 68

    20154 Milano

    Italy

    Phone: +39 02678171 10

    Fax: +39 02678171 35

    E-Mail:

    Vector Informática Brasil Ltda.

    Rua Verbo Divino 1488, 3º andar

    4719-904 São Paulo - SP

    Brazil

    Phone: +55 11 5180 2350

    Fax: +55 11 5181 7013

    E-Mail:

    Vector Informática Brasil Ltda.

    Rua Verbo Divino 1488, 3º andar

    4719-904 São Paulo - SP

    Brazil

    Phone: +55 11 5180 2350

    Fax: +55 11 5181 7013

    E-Mail:

    Vector Informática Brasil Ltda.

    Rua Verbo Divino 1488, 3º andar

    4719-904 São Paulo - SP

    Brazil

    Phone: +55 11 5180 2351

    Fax: +55 11 5181 7014

    E-Mail:

    Vector North America

    1351 South County Trail, Suite 310

    East Greenwich, RI 02818

    USA

    Phone: +1 401 398 7185

    E-Mail:

    Development software testing
    Operational sales non-automotive
     

    Vector North America

    1351 South County Trail, Suite 310

    East Greenwich, RI 02818

    USA

    Phone: +1 401 398 7185

    E-Mail:

    Vector North America

    1351 South County Trail, Suite 310

    East Greenwich, RI 02818

    USA

    Phone: +1 401 398 7185

    E-Mail:

    Vector France S.A.S.

    106 avenue Marx Dormoy

    92120 Montrouge

    France

    Phone: +33 1 73 28 42 00

    E-Mail:

    Vector France S.A.S.

    106 avenue Marx Dormoy

    92120 Montrouge

    France

    Phone: +33 1 73 28 42 00

    E-Mail:

    Vector France S.A.S.

    106 avenue Marx Dormoy

    92120 Montrouge

    France

    Phone: +33 1 73 28 42 42

    E-Mail:

    Vector France S.A.S.

    9 rue Matabiau

    31000 Toulouse

    France

    Phone: +33 170 952 270

    E-Mail:

    Squoring Technologies SAS

    9 Rue Matabiau

    31000 Toulouse

    France

    Phone: +33 170 952 200

    E-Mail:

    Vector Informatik India Pvt. Ltd.

    No 11-14, 5th & 6th floor, Tara Heights,
    Old Mumbai Pune Road, Wakadewadi

    Shivaji Nagar, Pune 411003

    India

    Phone: +91 20 6634 6600

    E-Mail:

    Vector Informatik India Pvt. Ltd.

    No 11-14, 5th & 6th floor, Tara Heights,
    Old Mumbai Pune Road, Wakadewadi

    Shivaji Nagar, Pune 411003

    India

    Phone: +91 20 6634 6600

    E-Mail:

    Vector Informatik India Pvt. Ltd.

    No 11-14, 5th & 6th floor, Tara Heights,
    Old Mumbai Pune Road, Wakadewadi

    Shivaji Nagar, Pune 411003

    India

    Phone: +91 20 6634 6634

    E-Mail:

    Vector Informatik India Pvt. Ltd. – Bengaluru office

    Kalyani Solitaire 2nd & 3rd Floor
    No.165/2, Krishna Raju Layout
    Doraisanipalya, Off Bannerghatta Road

    Bengaluru 560076

    India

    Phone: +91 80 6822 9600

    E-Mail:

    VecScan AB

    Theres Svenssons Gata 9

    417 55 Gothenburg

    Sweden

    Phone: +46 31 764 76 00

    Fax: +46 31 764 76 19

    E-Mail:

    VecScan AB

    Theres Svenssons Gata 9

    417 55 Gothenburg

    Sweden

    Phone: +46 31 764 76 00

    Fax: +46 31 764 76 19

    E-Mail:

    VecScan AB

    Theres Svenssons Gata 9

    417 55 Gothenburg

    Sweden

    Phone: +46 31 764 76 00

    Fax: +46 31 764 76 19

    E-Mail:

    VecScan AB

    Theres Svenssons Gata 9

    417 55 Gothenburg

    Sweden

    Phone: +46 31 764 76 00

    Fax: +46 31 764 76 19

    E-Mail:

    VecScan AB

    Teknikringen 9

    SE-583 30 Linköping

    Sweden

    Phone: +46 (0)13–560 18 14

    Fax: +46 31 764 76 19

    E-Mail:

    Vector North America

    66 Bovet Road, Suite 300

    San Mateo, CA 94402

    USA

    Vector North America

    66 Bovet Road, Suite 300

    San Mateo, CA 94402

    USA

    Vector North America

    66 Bovet Road, Suite 300

    San Mateo, CA 94402

    USA

    Vector Informatik GmbH

    Visitor Address: Holderäckerstr. 36

    70499 Stuttgart

    Germany

    Phone: +49 711 80670-0

    E-Mail:

    Address for Deliveries:
    Motorstr. 56
    70499 Stuttgart
    Germany

    Vector Informatik GmbH

    Visitor Address: Holderäckerstr. 36

    70499 Stuttgart

    Germany

    Phone: +49 711 80670 200

    E-Mail:

    Business hours: Monday to Friday from 8:30 am to 5:00 pm (CET/CEST).

    Online: https://portal.vector.com

    Vector Informatik GmbH

    Visitor Address: Holderäckerstr. 36

    70499 Stuttgart

    Germany

    Phone: +49 711 80670 500

    E-Mail:

    Show in map
    Please choose your region

    1. Region

    Please choose a continent / country:

    Your region/language settings differ from the requested site. Do you want to change to suggested region/language?
    Your region/language settings differ from the requested site. Do you want to change to suggested region/language?
    Your region/language settings differ from the requested site. Do you want to change to suggested region/language?
    Your region/language settings differ from the requested site. Do you want to change to suggested region/language?
    Your region/language settings differ from the requested site. Do you want to change to suggested region/language?
    Your region/language settings differ from the requested site. Do you want to change to suggested region/language?
    Your region/language settings differ from the requested site. Do you want to change to suggested region/language?
    Your region/language settings differ from the requested site. Do you want to change to suggested region/language?
    Your region/language settings differ from the requested site. Do you want to change to suggested region/language?
    Your region/language settings differ from the requested site. Do you want to change to suggested region/language?
    Your region/language settings differ from the requested site. Do you want to change to suggested region/language?
    Your region/language settings differ from the requested site. Do you want to change to suggested region/language?
    Your region/language settings differ from the requested site. Do you want to change to suggested region/language?
    Your region/language settings differ from the requested site. Do you want to change to suggested region/language?

    How to Successfully Implement Over-The-Air Software Updates With AUTOSAR Classic

    Do You Know the Different OTA Approaches in the Vehicle?

    Comparison of OTA Update Strategies

    Over-The-Air (OTA) software updates are now an integral part of many consumer electronics products. Apps on smartphones and tablets are supplied with updates practically every day. Applications as well as the firmware of the devices can thus be updated continuously and easily directly at the end user.

    In the automotive sector, software updates "Over-The-Air" have already been implemented in some cases, but the functionality is then usually restricted to certain ECUs or parts of the vehicle software. Due to the increasing complexity of vehicle software and its importance for functionality, the need for software updates is growing - even for safety-relevant applications/functions.

    Since today's vehicles can contain more than 100 ECUs, an optimal implementation is a real challenge. Vehicle functions distributed over several ECUs must be updated via so-called update campaigns, consisting of update packages for all affected ECUs. This can lead to sometimes complex update scenarios in the vehicle. It is essential that the update processes run automatically, unattended and completely reliably. In the event of an error, it must be ensured at all times that the vehicle can be returned to an operational state, if necessary by completely restoring the previous software version.

    Focus on AUTOSAR Classic ECUs

    Flash Bootloader as Optimal Addition

    This also brings ECUs based on the AUTOSAR Classic basic software into focus, such as door control units from the body domain. These ECUs usually have a so-called Flash Bootloader, which is used to update the application software including the AUTOSAR basic software on the ECU via diagnostics. 

    Flash Bootloaders have been used for many years to program an ECU software or to update it later in its life cycle. They are comparatively small and yet highly optimized programs that are addressed via diagnostics and erase and rewrite the flash memory. Updates via the Flash Bootloader take place during development, production and in the service shop. At the time of the update, the full bandwidth of the corresponding bus system can be used. In any case, programming takes place in a safe state of the vehicle.

    For the use case of "Over-The-Air" software updates, a Flash Bootloader is also an optimal addition (Figure 1).

    Figure 1: Software update via Flash Bootloader

    The new software is transferred wirelessly to the vehicle and temporarily stored on a central ECU, here called a "Connectivity ECU", with sufficiently large memory. As soon as the software is to be uploaded to the target ECU in a safe state, the connectivity ECU starts the update process and loads the software update to the target ECU via a diagnostic sequence - just as the service shop diagnostic tester would do.

    Two Limiting Factors in OTA Scenarios

    1. During the update process, the vehicle remains in a safe state and cannot be used. This "down time" of the vehicle is usually strictly limited by the OEM for the benefit of customer convenience - this has a considerable influence on the scope or size of the updates.

    2. The ECUs involved in the update process must be supplied with power. The remaining capacity of the battery therefore sets a strict limit for the duration of the update.

    Houston, We Have NO Problem!

    The Way To the Efficient Update Campaign

    As already mentioned, there is no alternative to the possibility of restoring a previous software status in the event of a faulty update. Therefore, in extreme cases, a complete reprogramming and rollback of all ECUs involved in the update campaign is required. The above-mentioned limiting factors of downtime and battery capacity restrict the possibilities of a Flash Bootloader in the OTA scenario.

    Another possibility is to transfer the data to the respective target ECUs already during normal operation, i.e. while the vehicle is in motion, with storage in a memory area separate from the driving application (Figure 2). The data is not necessarily stored temporarily in the connectivity ECU. Instead, the received data is passed directly to the target ECUs.

    This approach has the following advantages:

    • The transfer time of the update to the target ECU in the safe vehicle state is being saved.
    • Restoring the previous software is possible without further data transmission.
    Figure 2: Software download while driving

    With concepts that rely on appropriate hardware support for switching between software versions, activation times can be reduced to a minimum. The vehicle therefore remains ready for operation at all times despite the software update.

    With Release 19-11, AUTOSAR Classic has published requirements for a Firmware Over-The-Air (FOTA) solution that enables data transfer while the vehicle is still in motion. However, no corresponding basic software module has yet been introduced to the standard.

    Vector was an early adopter of FOTA with MICROSAR Classic and has already been offering an extension to the MICROSAR basic software for software download since 2018 that meets the AUTOSAR requirements in particular.

    Part 2

    Memory Partitioning and Version Switching

    A key enabler for a successful OTA update is memory partitioning in the target ECU: The memory must provide a way to cache the software update during normal execution, potentially over multiple drive cycles.

    Strategies for Memory Management

    This part of the article series therefore focuses on possible strategies for memory management. The various approaches differ mainly on the basis of the required hardware properties as well as the performance of the switchover, i.e. the time that is significantly responsible for the vehicle downtime during software updates.

    In order to receive a new software version during the normal execution of the ECU application and to be able to store it temporarily in the ECU, an additional memory is required which can be read and written to independently of the running software. In the following, we assume typical microcontrollers that execute the application directly from flash memory. Therefore, a flash memory, which supports at least one additional partition with Read-While-Write (RWW) property, which is not used for the execution of the application, is required for the application. Such RWW partitioning allows code to be executed from one partition while writing to another partition. The read partition contains the current software. The written partition is the one into which the new software is written.

    This approach provides a solution for storing the software update. However, the new software must also be brought to execution, meaning it must be activated. Overall, the following typical approaches can be considered:

    Hardware Supported A/B Swap

    A controller with A/B swap capability divides its internal memory into two partitions (also called banks). These two partitions can be assigned a uniform execution address in alternation. It is thus possible that an image linked once can be executed at two different physical positions. Which partition (A or B) is currently active is typically either permanently stored in a hardware register or set by software at each reboot. Thus, a reboot of the controller is sufficient for the switchover. There is practically no downtime of the ECU during the activation phase.

    Figure 3 shows an example of the switchover in a system with A/B banks. The physical address range 0xA00000 - 0xC00000 can be read and executed after the switchover via the range 0x00000 - 0x20000.

    Figure 3: Switchover in a system with A/B banks

    Dual Binary Approach and Position Independent Code

    Even without hardware support of the address ranges of bank A and B, fast switching can be achieved. But what are the conditions and restrictions for this?

    In the dual binary approach, a software version for the application is built both specifically for the addresses for bank A and for bank B. This means that a software update always consists of two different binaries. Only the data that is appropriate for the currently inactive bank is downloaded. So before an update is applied, the correct data is selected based on the active partition. However, this solution has a massive impact on the software logistics of the vehicle manufacturer. This is because he would have to maintain and manage two versions for each software version. Figure 4 shows an example of the scenario in the dual binary approach.

    Figure 4: Scenario in the dual binary approach

    Another method is to generate the software independently of the actual execution address. This approach is called position-independent code. It is supported by some compilers. In practice, however, it has been shown that support for position-independent code is accompanied by very high demands on the structure of the code. Among other things, this results in disadvantages with regard to execution performance.

    Last But not Least: Caching Approach With Backup

    If neither the hardware-supported switching of address ranges nor the two alternative approaches mentioned above come into question, there is still the option for a generic way, the caching approach with backup. For this, a cache that is independent of the active partition is all that is necessary. This must of course be large enough to store the software version twice. The idea behind this approach is that the area of the active (i.e. currently running) software remains constant. During the switchover, the area is erased and overwritten with the new software. To meet the requirement for a rollback capability, the current software must be stored as a backup. The buffer will therefore have to be able to store both the new (initially inactive) software and the backup.

    This requirement is met as follows

    • internal flash with at least two RWW partitions, where partitions not used for execution can store two software states

              or

    • Availability of additional external memory that can store two software states

    Figure 5 shows an example of the caching approach with backup. The creation of the backup can be executed in the background, just like the download of the new software. For the switchover, only the active area must be deleted and written with the software from the inactive partition.

    Figure 5: Caching approach with backup

    However, the caching approach has a clear disadvantage compared to the other approaches with internal flash: The longer activation time. The advantage, on the other hand, is that it offers more freedom in hardware selection. In addition, unlike the dual-binary approach, the caching approach does not require the management of different binary data for different execution addresses.

    The use of external memory should therefore be particularly advantageous for existing ECU projects that are to be expanded with the option of software download. This is a real lifeline when the requirements of the other approaches for internal flash memory cannot be met.

    To Be Continued

    Another part of this article series will deal with the following topic:

    • Software download within MICROSAR Classic

    Don't miss the continuation of this series! Follow us on the social media channels and you will be one of the first readers.

    MICROSAR.OTA - Basic Software

    MICROSAR.OTA provides developers with a solution that goes beyond the AUTOSAR Classic standard. It enables the software download to be performed in parallel with the execution of the driving software in the background. In this process, the received data is stored in a separate memory area that can be accessed independently of the application being executed.

    Related Pages

    MICROSAR Classic
    The smart implementation of the AUTOSAR standard.
    Flash Bootloader
    Compact solution for reprogramming ECUs quickly, efficiently and securely.
    AUTOSAR Classic
    The production-proven standard for managing automotive ECU complexity.
    Automotive OTA
    Automotive Over-The-Air is changing the industry. Applications such as software updates, live diagnostics and data collection promise enormous savings potential and enable new business opportunities.
    vConnect | Vector Automotive Over-The-Air Solution
    Keep in touch with your vehicle fleet: Get to know the new Vector Automotive OTA Solution.